WebWalkerQA
MiroFlow's evaluation on the WebWalkerQA benchmark demonstrates web navigation and question-answering capabilities across diverse domains.
More details: WebWalkerQA on HuggingFace
Dataset Overview
Key Dataset Characteristics
- Total Tasks: 680 tasks in the main split
- Language: English
- Domains: Conference, game, academic, business, and more
- Task Types: Web navigation, information retrieval, multi-hop reasoning
- Difficulty Levels: Easy, medium, hard
- Evaluation: Automated comparison with ground truth answers
Quick Start Guide
Step 1: Prepare the WebWalkerQA Dataset
This will create the standardized dataset at data/webwalkerqa/standardized_data.jsonl.
Step 2: Configure API Keys
.env Configuration
# Search and web scraping
SERPER_API_KEY="xxx"
JINA_API_KEY="xxx"
# Code execution
E2B_API_KEY="xxx"
# LLM (Claude 3.7 Sonnet via OpenRouter)
OPENROUTER_API_KEY="xxx"
OPENROUTER_BASE_URL="https://openrouter.ai/api/v1"
# Evaluation and hint generation
OPENAI_API_KEY="xxx"
# Vision capabilities
ANTHROPIC_API_KEY="xxx"
GEMINI_API_KEY="xxx"
.env Configuration
# Search and web scraping
SERPER_API_KEY="xxx"
JINA_API_KEY="xxx"
# Code execution
E2B_API_KEY="xxx"
# LLM (MiroThinker via SGLang)
OAI_MIROTHINKER_API_KEY="dummy_key"
OAI_MIROTHINKER_BASE_URL="http://localhost:61005/v1"
# Evaluation and final answer extraction
OPENAI_API_KEY="xxx"
# Vision capabilities
ANTHROPIC_API_KEY="xxx"
GEMINI_API_KEY="xxx"
Step 3: Run the Evaluation
Run WebWalkerQA Evaluation
uv run main.py common-benchmark --config_file_name=agent_webwalkerqa_claude37sonnet output_dir="logs/webwalkerqa/$(date +"%Y%m%d_%H%M")"
Progress Monitoring and Resume
To check the progress while running:
If you need to resume an interrupted evaluation, specify the same output directory:
Results are automatically generated in the output directory:
- benchmark_results.jsonl - Detailed results for each task
- benchmark_results_pass_at_1_accuracy.txt - Summary accuracy statistics
Usage Examples
Limited Task Testing
# Test with 10 tasks only
uv run main.py common-benchmark --config_file_name=agent_webwalkerqa_claude37sonnet benchmark.execution.max_tasks=10 output_dir="logs/webwalkerqa/test"
Custom Concurrency
# Run with 10 concurrent tasks
uv run main.py common-benchmark --config_file_name=agent_webwalkerqa_claude37sonnet benchmark.execution.max_concurrent=10 output_dir="logs/webwalkerqa/$(date +"%Y%m%d_%H%M")"
Using MiroThinker Model
uv run main.py common-benchmark --config_file_name=agent_webwalkerqa_mirothinker output_dir="logs/webwalkerqa/$(date +"%Y%m%d_%H%M")"
Available Agent Configurations
| Agent Configuration | Model | Use Case |
|---|---|---|
agent_webwalkerqa_claude37sonnet |
Claude 3.7 Sonnet | Recommended for best performance |
agent_webwalkerqa_mirothinker |
MiroThinker | For local deployment |
Documentation Info
Last Updated: October 2025 ยท Doc Contributor: Team @ MiroMind AI