Skip to content

BrowseComp-ZH (Chinese)

MiroFlow's evaluation on the BrowseComp-ZH benchmark demonstrates advanced web browsing and information retrieval capabilities in the Chinese information ecosystem.

More details: BrowseComp-ZH: Benchmarking Web Browsing Ability of Large Language Models in Chinese


Dataset Overview

Key Dataset Characteristics

  • Total Tasks: 289 complex multi-hop retrieval questions in the test split
  • Language: Chinese (Simplified)
  • Task Types: Web browsing, search, and information retrieval with multi-hop reasoning
  • Domains: 11 domains including Film & TV, Technology, Medicine, History, Sports, and Arts
  • Evaluation: Automated comparison with ground truth answers
  • Difficulty: High-difficulty benchmark designed to test real-world Chinese web browsing capabilities

Quick Start Guide

Step 1: Prepare the BrowseComp-ZH Dataset

Download BrowseComp-ZH Dataset
uv run main.py prepare-benchmark get browsecomp-zh-test

This will create the standardized dataset at data/browsecomp-zh-test/standardized_data.jsonl.

Step 2: Configure API Keys

.env Configuration
# Search and web scraping (recommended for Chinese web)
SERPER_API_KEY="xxx"
JINA_API_KEY="xxx"

# Code execution
E2B_API_KEY="xxx"

# LLM (Claude 3.7 Sonnet via OpenRouter)
OPENROUTER_API_KEY="xxx"
OPENROUTER_BASE_URL="https://openrouter.ai/api/v1"

# Evaluation and hint generation
OPENAI_API_KEY="xxx"

# Vision capabilities
ANTHROPIC_API_KEY="xxx"
GEMINI_API_KEY="xxx"

# Optional: Set Chinese context mode
CHINESE_CONTEXT="true"

Step 3: Run the Evaluation

Run BrowseComp-ZH Evaluation
uv run main.py common-benchmark --config_file_name=agent_browsecomp-zh_claude37sonnet output_dir="logs/browsecomp-zh/$(date +"%Y%m%d_%H%M")"

Results are automatically generated in the output directory: - benchmark_results.jsonl - Detailed results for each task - benchmark_results_pass_at_1_accuracy.txt - Summary accuracy statistics


Usage Examples

Limited Task Testing
# Test with 10 tasks only
uv run main.py common-benchmark --config_file_name=agent_browsecomp-zh_claude37sonnet benchmark.execution.max_tasks=10 output_dir="logs/browsecomp-zh/$(date +"%Y%m%d_%H%M")"
Using MiroThinker Model
uv run main.py common-benchmark --config_file_name=agent_browsecomp-zh_mirothinker output_dir="logs/browsecomp-zh/$(date +"%Y%m%d_%H%M")"

Available Agent Configurations

Agent Configuration Model Use Case
agent_browsecomp-zh_claude37sonnet Claude 3.7 Sonnet Recommended for better performance on Chinese tasks
agent_browsecomp-zh_mirothinker MiroThinker For local deployment

Documentation Info

Last Updated: October 2025 ยท Doc Contributor: Team @ MiroMind AI